Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Bimetallic nanoparticles remain a promising avenue to achieve highly reactive catalysts. In this contribution, we demonstrate the use of a photoswitchable peptide for the production of PdAu bimetallic nanoparticles at a variety of Pd : Au ratios. Using this peptide, the biomolecular overlayer structure can be switched between two different conformations ( cis vs. trans ) via light irradiation, thus accessing two different surface structures. The composition and arrangement of the materials was fully characterized, including atomic-level analyses, after which the reactivity of the bimetallic materials was explored using the reduction of 4-nitrophenol as a model system. Using these materials, it was demonstrated that the reactivity was maximized for the particles prepared at a Pd : Au ratio of 1 : 3 and with the peptide in the cis conformation. Such results present routes to a new generation of catalysts that could be remotely activated for on/off reactivity as a function of the ligand overlayer conformation.more » « less
-
Previous work has shown that spherical CuO nanomaterials show negative effects on cell and animal physiology. The biological effects of Cu 2 O materials, which possess unique chemical features compared to CuO nanomaterials and can be synthesized in a similarly large variety of shapes and sizes, are comparatively less studied. Here, we synthesized truncated octahedral Cu 2 O particles and characterized their structure, stability, and physiological effects in the nematode worm animal model, Caenorhabditis elegans . Cu 2 O particles were found to be generally stable in aqueous media, although the particles did show signs of oxidation and leaching of Cu 2+ within hours in worm growth media. The particles were found to be especially sensitive to inorganic phosphate (PO 4 3− ) found in standard NGM nematode growth medium. Cu 2 O particles were observed being taken up into the nematode pharynx and detected in the lumen of the gut. Toxicity experiments revealed that treatment with Cu 2 O particles caused a significant reduction in animal size and lifespan. These toxic effects resembled treatment with Cu 2+ , but measurements of Cu leaching, worm size, and long-term behavior experiments show the particles are more toxic than expected from Cu ion leaching alone. These results suggest worm ingestion of intact Cu 2 O particles enhances their toxicity and behavior effects while particle exposure to environmental phosphate precipitates leached Cu 2+ into biounavailable phosphate salts. Interestingly, the worms showed an acute avoidance of bacterial food with Cu 2 O particles, suggesting that animals can detect chemical features of the particles and/or their breakdown products and actively avoid areas with them. These results will help to understand how specific, chemically-defined particles proposed for use in polluted soil and wastewater remediation affect animal toxicity and behaviors in their natural environment.more » « less
An official website of the United States government
